16 research outputs found

    Variables in early algebra: exploring didactic potentials in programming activities

    Get PDF
    In this paper we consider implications of the current world-wide inclusion of computational thinking in relation to children’s development of algebraic thinking. Little is known about how newly developed visual programming environments such as Scratch could enhance early algebra learning. The study is based on examples of programming activities used by mathematics teachers in Sweden, teaching students aged 10–12 years during the first two years of implementing programming in the mathematics curriculum. Informed by Chevallard’s praxeology in terms of praxis and logos, we describe, unpack, discuss and expand these activities. Core issues related to algebra found in the three activities are as follows: making implicit variables explicit; using a counter variable; and identifying parameters as a specific type of variable. Our findings show that, in addition to already identified uses of variables in early algebra, programming activities in the early years bring in new aspects and new ways of treating variables that could, potentially, enhance students’ understanding of variables and generalization, provided that programming praxis is embedded in an appropriate algebra logos

    A Cauchy-Dirac delta function

    Full text link
    The Dirac delta function has solid roots in 19th century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac's discovery by over a century, and illuminating the nature of Cauchy's infinitesimals and his infinitesimal definition of delta.Comment: 24 pages, 2 figures; Foundations of Science, 201

    Stevin numbers and reality

    Full text link
    We explore the potential of Simon Stevin's numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420

    Ten Misconceptions from the History of Analysis and Their Debunking

    Full text link
    The widespread idea that infinitesimals were "eliminated" by the "great triumvirate" of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.Comment: 46 pages, 4 figures; Foundations of Science (2012). arXiv admin note: text overlap with arXiv:1108.2885 and arXiv:1110.545

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond

    Full text link
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley's criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley's criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz's infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz's defense of infinitesimals is more firmly grounded than Berkeley's criticism thereof. We show, moreover, that Leibniz's system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz's strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity.Comment: 69 pages, 3 figure

    On the relations between historical epistemology and students’ conceptual developments in mathematics

    Get PDF
    There is an ongoing discussion within the research field of mathematics education regarding the utilization of the history of mathematics within mathematics education. In this paper we consider problems that may emerge when the historical epistemology of mathematics is paralleled to students’ conceptual developments in mathematics. We problematize this attempt to link the two fields on the basis of Grattan-Guinness’ distinction between “history” and “heritage”. We argue that when parallelism claims are made, history and heritage are often mixed up, which is problematic since historical mathematical definitions must be interpreted in its proper historical context and conceptual framework. Furthermore, we argue that cultural and local ideas vary at different time periods, influencing conceptual developments in different directions regardless of whether historical or individual developments are considered, and thus it may be problematic to uncritically assume a platonic perspective. Also, we have to take into consideration that an average student of today and great mathematicians of the past are at different cognitive levels

    Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

    Get PDF
    We examine some of Connes' criticisms of Robinson's infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes' own earlier work in functional analysis. Connes described the hyperreals as both a "virtual theory" and a "chimera", yet acknowledged that his argument relies on the transfer principle. We analyze Connes' "dart-throwing" thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being "virtual" if it is not definable in a suitable model of ZFC. If so, Connes' claim that a theory of the hyperreals is "virtual" is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren't definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in his Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes' criticism of virtuality. We analyze the philosophical underpinnings of Connes' argument based on Goedel's incompleteness theorem, and detect an apparent circularity in Connes' logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace (featured on the front cover of Connes' magnum opus) and the Hahn-Banach theorem, in Connes' own framework. We also note an inaccuracy in Machover's critique of infinitesimal-based pedagogy.Comment: 52 pages, 1 figur

    Visualizations in Mathematics

    No full text
    In this paper we discuss visualizations in mathematics from a historical and didactical perspective. We consider historical debates from the 17th and 19th centuries regarding the role of intuition and visualizations in mathematics. We also consider the problem of what a visualization in mathematical learning can achieve. In an empirical study we investigate what mathematical conclusions university students made on the basis of a visualization. We emphasize that a visualization in mathematics should always be considered in its proper context
    corecore